Learn how to refine TimeGPT’s anomaly detection process by tuning parameters for improved accuracy and alignment with specific use cases.
1. Install and Import Dependencies
2. Initialize the Nixtla Client
3. Conduct a baseline detection
x | unique_id | ds | y |
---|---|---|---|
2764 | 0 | 2015-07-05 | 6.499787 |
2765 | 0 | 2015-07-06 | 6.859615 |
2766 | 0 | 2015-07-07 | 6.881411 |
2767 | 0 | 2015-07-08 | 6.997596 |
2768 | 0 | 2015-07-09 | 7.152269 |
4. Fine-tuned detection
Fine-tuned Detection Log Output
Fine-tuned TimeGPT Anomaly Detection
5. Adjusting Forecast Horizon and Step Size
Adjusted Horizon and Step Size Visualization
h
and step_size
depends on the nature of your data:h
and step_size
h
and step_size