Understand the benefits of using TimeGPT for time series analysis.
api_key
.1. Data Introduction
unique_id | min date | max date | count | min y | mean y | median y | max y |
---|---|---|---|---|---|---|---|
FOODS_1 | 2011-01-29 | 2016-05-22 | 1941 | 0.0 | 2674.086 | 2665.0 | 5493.0 |
FOODS_2 | 2011-01-29 | 2016-05-22 | 1941 | 0.0 | 4015.984 | 3894.0 | 9069.0 |
… | … | … | … | … | … | … | … |
2. Model Fitting (TimeGPT, ARIMA, LightGBM, N-HiTS)
2.1 TimeGPT
2.2 Classical Models (ARIMA)
2.3 Machine Learning Models (LightGBM)
2.4 N-HiTS
3. Performance Comparison and Results
Model | RMSE | SMAPE |
---|---|---|
ARIMA | 724.9 | 5.50% |
LightGBM | 687.8 | 5.14% |
N-HiTS | 605.0 | 5.34% |
TimeGPT | 592.6 | 4.94% |
Comparative Performance Visualization
Benchmark Results
4. Conclusion
api_key
and access advanced forecasting with minimal overhead.